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1 Local to global state bound

Proposition 1. Let ρ be an arbitrary quantum state, let Uθ be a parameterized unitary matrix and write
ρU = U†

θρUθ for short. Consider a global cost of the form

CG(θ) = 1− Tr [ρUHG] where HG = |0⟩⟨0|⊗n (1)

is the all zero projector, and a local cost of the form

CL(θ) = 1− Tr [ρUHL] where HL =
1

n

n∑
j

|0⟩⟨0|j ⊗ Ij (2)

It follows that
CL(θ) ⩽ CG(θ) ⩽ nCL(θ) (3)

Thus CL(θ) = 0 iff CG(θ) = 0.

Proof. We can write HL = 1
n

∑n
j HL,j , where

HL,j = |0⟩⟨0|j ⊗ Ij (4)

are projectors that mutually commute. Note that
∏n

j=1 HL,j = HG. We can associate events Ej with the

projectors HL,j such that Pr[Ej ] = Tr [ρUHL,j ] . Then, Tr
[
ρ
∏n

j=1 HL,j

]
= Pr∩n

j=1Ej . Recall, from basic
probability theory, that for any set of events A := {A1, A2, . . . , An}, it holds that

Pr[∪n
i=1Ai] ⩾

1

n

n∑
i=1

Pr[Ai] . (5)

Choosing Ai = Ej , we see

Pr
[
∪n
j=1Ej

]
⩾

1

n

n∑
i=j

Pr
[
Ej

]
=⇒ 1− Pr

[
∩n
j=1Ej

]
⩾

1

n

n∑
j=1

(1− Pr[Ej ])

=⇒ 1− Pr
[
∩n
j=1Ej

]
⩾ 1− 1

n

n∑
j=1

Tr[ρUHL,j ]

=⇒ 1− Tr[ρUHG] ⩾ 1− Tr[ρUHL] .

(6)

This is precisely the first desired inequality CL ⩽ CG.
To prove the remaining inequality, observe that, via the union bound,

Pr
[
∪n
j=1Aj

]
⩽

n∑
j=1

Pr[Aj ] (7)
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we have

Pr
[
∪n
j=1Ej

]
⩽

n∑
j=1

Pr
[
Ej

]
=⇒ 1− Pr

[
∩n
j=1Ej

]
⩽

n∑
j=1

(1− Pr[Ej ])

=⇒ 1− Tr[ρUHG] ⩽ n (1− Tr[ρUHL])

(8)

Thus, CG ⩽ nCL as required.
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2 Barren Plateaus

A parameterized unitary circuit can be represented as

U(θ) =

L∏
l=1

exp(−iθlVl)Wl =

L∏
l=k+1

exp(−iθlVl)Wl︸ ︷︷ ︸
U+

k∏
l=1

exp(−iθlVl)Wl︸ ︷︷ ︸
U−

(9)

where {Vl}Ll=1 are hermitian, involutionary (V 2
l = I) generators of rotations exp(−iθlVl) around independent,

trainable angles θ ∈ [0, 2π)L and {Wl}Ll=1 are fixed gates.
Taking the partial derivative of the circuit gives

∂kU(θ) = −iU+VkU− (10)

∂kU
† = iU−

†VkU+
† (11)

We will take our cost function to be the standard VQE cost, i.e.

E(θ) = ⟨0|U(θ)
†
HU(θ)|0⟩ = Tr

(
U(θ)ρU(θ)

†
H
)
. (12)

This is the expectation value of a Hermitian operator H for a state U(θ)ρU(θ)
† where ρ = |0⟩⟨0|⊗n.

The derivative of the cost function with respect to θk is given by

∂θkE(θ) = iTr
(
ρ(U−

†VkU+
†HU − U†HU+VkU−)

)
(13)

= iTr

ρU−
†(Vk U+

†HU+︸ ︷︷ ︸
H+

−U+
†HU+︸ ︷︷ ︸
H+

Vk)U−

 (14)

= iTr

U−ρU−
†︸ ︷︷ ︸

ρ−

[Vk, H+]

 (15)

= iTr
(
[ρ−, Vk]U+

†HU+

)
(16)

In the final line, we use the cyclicity of the trace operation, i.e. Tr[A[B,C]] = Tr[ABC −ACB] = Tr[ABC −BAC] =
Tr[[A,B]C].

2.1 Average of the cost gradients
The average value of the gradient of the cost function, over a random initialisation of the parameters θ, is
given by

⟨∂θkE(θ)⟩ =
∫

dUp(U)∂θkE(θ) =

∫
dU+p(U+)dU−p(U−)∂θkE(θ) (17)

Thus we have

⟨∂θkE(θ)⟩ = i

∫ ∫
dU−p(U−) Tr

(
ρ−

[
Vk,

∫
dU+p(U+)H+

])
(18)

(19)

Assuming U− is at least a 1-design using Eq.(39) (from Section 2.3) we have that

⟨∂θkE(θ)⟩ = i

∫
dµ(U−) Tr

(
ρ−

[
Vk,

∫
dU+p(U+)H+

])
(20)

= i
Tr(ρ)

d
Tr

([
Vk,

∫
dU+p(U+)H+

])
(21)

= 0 (22)
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as the trace of a commutator is zero.
Similarly, assuming U+ is at least a 1-design, results in:

⟨∂θkE(θ)⟩ = i

∫
dU−p(U−) Tr

(
ρ−

[
Vk,

∫
dµ(U+)H+

])
(23)

= i

∫
dU−p(U−) Tr

(
ρ−

[
Vk,

Tr(H)

d
I
])

(24)

= 0 (25)

Hence, the gradients are not biased in any single direction.

2.2 Variance of the cost gradients
The probability that the cost function gradient deviates from its average of zero can be bounded using
Chebyshev’s inequality,

P (|∂θkE| ⩾ ϵ) ⩽
Var(∂θkE)

ϵ2
, (26)

where the variance of the gradient is given as:

Var(∂θkE) =
〈
(∂θkE)2

〉
− ⟨∂θkE⟩2︸ ︷︷ ︸

0

=

∫
dUp(U)(∂θkE)2 (27)

=

∫
dU−p(U−)

∫
dU+p(U+)i

2 Tr
(
ρ
⊗2

− [Vk, H+]
⊗2
)

(28)

Assuming U− is a 2-design, using Eq.(40), results in:

Var(∂θkE) = −
∫

dU+p(U+)

∫
dµ(U−) Tr

(
U

⊗2

− ρ
⊗2

U−
†
⊗2

[Vk, H+]
⊗2
)

= −
∫

dU+p(U+)

(
Tr
(
[Vk, H+]

⊗2
)
Tr
(
ρ
⊗2
)
+Tr

(
[Vk, H+]

2
)
Tr
(
ρ

2
)

d2 − 1

−
Tr
(
[Vk, H+]

2
)
Tr
(
ρ
⊗2
)
+Tr

(
[Vk, H+]

⊗2
)
Tr
(
ρ2
)

d(d2 − 1)

)

= −
(
1− 1

d

) 〈Tr([Vk, Hu]
2
)〉

U+

d2 − 1

(29)

As Tr(ρ) = 1 and Tr
(
[Vk, H+]

⊗2
)
= Tr([Vk, H+])

2
= 0.

To bound Tr
(
[Vk, H+]

2
)

we use the triangle inequality and then Cauchy-Schwarz to show that

∣∣Tr([Vk, H+]
2
)∣∣ =

∣∣∣∣∣∣2Tr((VkH+)
2
)
− 2Tr

 V 2
k︸︷︷︸
I

H2
+

∣∣∣∣∣∣ (30)

⩽ 2
∣∣Tr((VkH+)

2
)∣∣+ 2

∣∣Tr(H2
+

)∣∣︸ ︷︷ ︸
∥H∥2

2

(31)

⩽ 2||Vk||2||VkH+Vk||2 + 2∥H∥22 (32)

= 2Tr
[
VkH+VkV

†
k H+V

†
k

]
+ 2∥H∥22 (33)

= 2Tr
[
H2

+

]
+ 2∥H∥22 (34)

= 4∥H∥22 (35)
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Assuming that ∥H∥22 ∈ O(d), it follows that Var(∂θkE) ∈ O
(
1
d

)
.

Assuming U+ is a 2-design, results in:

Var(∂θkE) = −
∫

dU−p(U−)

∫
dµ(U+) Tr

(
U

⊗2

+ [ρ−, Vk]
⊗2

U+
†
⊗2

H
⊗2
)

(36)

= − 1

d2 − 1

(
Tr
(
H2
)
− Tr(H)

2

d

)〈
Tr
(
[ρu, Vk]

2
)〉

U−
(37)

For simplicity let’s assume that H is expressed as a sum of Pauli operators and so Tr(H) = 0. Then using
Cauchy-Schwarz (41) we get: ∣∣∣Tr([ρ−, Vk]

2
)∣∣∣ ⩽ 4Tr

(
ρ2−
)
= 4 (38)

Therefore, Var(∂θkE) ∈ O
(
1
d

)
.

Therefore the probability that the cost gradient deviates from 0 is suppressed exponentially in the number
of qubits.
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2.3 Useful formulas
Let U(d) denote the unitary group of degree d = 2n. Let dµ(U) be the volume element of the Haar measure,
where U ∈ U(d). The following identities hold.

∫
dµ(U) Tr

(
UAU†B

)
=

Tr(A) Tr(B)

d
(39)

∫
dµ(U) Tr

(
AU

⊗2

BU†
⊗2
)
=

Tr(A) Tr(B) + Tr(AW ) Tr(BW )

d2 − 1
− Tr(AW ) Tr(B) + Tr(A) Tr(BW )

d(d2 − 1)
(40)

where W is the swap operator W |i⟩ |j⟩ = |j⟩ |i⟩.

Note that Tr(A
⊗

C)W ) = Tr(AC) (prove this to yourself!) and therefore Tr
(
A

⊗2

W
)
= Tr

(
A2
)
.

The Cauchy-Schwarz inequality in trace form is given by:

∣∣Tr(A†B
)∣∣ ⩽ ||A||2||B||2 =

√
Tr(A†A)

√
Tr(B†B) (41)
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