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1 Local to global state bound

Proposition 1. Let p be an arbitrary quantum state, let Ug be a parameterized unitary matriz and write

U = ngUg for short. Consider a global cost of the form
Cc(0) =1—TrlpyHg] where Hg = |0)(0|®™

1s the all zero projector, and a local cost of the form

1 n
Cr(0) =1—Tr[pyHy] where Hy =~ Z 10)(0]; ® I
J

It follows that
CL(0) < Cc(6) < nCL(6)

Thus Cr,(0) = 0 iff Ce(0) = 0.
Proof. We can write Hy, = 1 305 Hy j, where

Hy ; =10){(0; ® I;

(1)

(4)

are projectors that mutually commute. Note that H?Zl Hy, ; = Hg. We can associate events F; with the

projectors Hy, ; such that Pr[E;] = Tr[pyHy, ;] . Then, Tr {p I, HLJ} = PrNj_;F;. Recall, from basic

probability theory, that for any set of events A := {41, As,..., A,}, it holds that

1 n
Priul Al = — ) Pr[A].
A > 3 3 PrAl
Choosing A; = E;, we see

_ 1 & _
PI‘[ ?:1Ej] }EZPY[EJ]
i=j

1
= 1-Pr[N_,E;] > - Zl (1 - Pr[E;])
iz

1 n
— 1-Pr[Nj_,E;] >1— o ZTT[PUHLJ]

j=1
== 1- TI‘[pUHg} >1- TI‘[,DUHL} .

This is precisely the first desired inequality Cp < Cg.
To prove the remaining inequality, observe that, via the union bound,

PriUl_A;] <) Pr(4]
j=1

()



we have

Thus, Cg < nCy, as required.

= 1-Pr[0,B] < (1 Pr[E)])
= 1-TrpvHg] < n(1—TrlpvHL])



2 Barren Plateaus

A parameterized unitary circuit can be represented as

Hexp (=10, V)W, = H exp(—i6,V}) VVlHeXp —i60, V) )W, (9)
=1 I=k+1 1=1

U, U_

where {V;}} | are hermitian, involutionary (V;? = I) generators of rotations exp(—i6;V;) around independent,
trainable angles 8 € [0,27)L and {W;}£_ | are fixed gates.
Taking the partial derivative of the circuit gives

oU(0) = —iU Vi, U_ (10)
Ut =iU_TWU, T (11)
We will take our cost function to be the standard VQE cost, i.e.

E(8) = (0[U(8)' HU(8)[0) = Tx(U(8)pU(8) ) . (12)
This is the expectation value of a Hermitian operator H for a state U(0)pU (0)" where p = [0)(0]*".
The derivative of the cost function with respect to 6y is given by

6, E(0) = iTr(p(UJVkUﬂHU - UTHU+VkU,)) (13)
=iTr| pU_T(VyUTHU, —U.THU, V},)U_ (14)
—_— Y
Hy Hy
=iTr| U_pU_T [V, H{] (15)
——
p—
- z'Tr([p,, Vk}U+THU+) (16)

In the final line, we use the cyclicity of the trace operation, i.e. Tr[A[B, C]] = Tr[ABC — ACB] = Tr[ABC — BAC] =

Te[[A, B]C).

2.1 Average of the cost gradients

The average value of the gradient of the cost function, over a random initialisation of the parameters 6, is
given by

@0 E®)) = [ AUp()20, E(O) = [ AULp(U4)U_p(U- )0, E(6) (17)
Thus we have
onpo) =i [ [avpw (o v, [avpwm ) (18)
(19)
Assuming U_ is at least a 1-design using Eq.(39) (from Section 2.3) we have that ’
00, 8(0) =i [auw ) 1e(p- Vi [avopwm]) (20)
-2 ([, [ avepwm ) @)
=0 (22)



as the trace of a commutator is zero.
Similarly, assuming U, is at least a 1-design, results in:

0. 5(6)) =1 [ 0w )T (oo [, [auwm ) (23)
Tr

/dU p(U- )I&«( [V,ﬁ ilH)]ID (24)
-0 (25)

Hence, the gradients are not biased in any single direction.

2.2 Variance of the cost gradients

The probability that the cost function gradient deviates from its average of zero can be bounded using
Chebyshev’s inequality,

Var(0y, E
P(5, ) > ) < “2E), (26)
where the variance of the gradient is given as:
Var(@y, E) = (0, E)") ~ (00, B)° = [ dUp(U)(@0, EY* 2n)
0
2
— [avpve) [ aUpU)2 1 (5 Vi, 1,1 (28)
Assuming U_ is a 2-design, using Eq.(40), results in:
Var(9y, E /dU+p Uy) /du ) Tr U® " y_1® v, H,]® )
r([Vk, H+]® ) Tr<p®2) ¥ Tr([Vk, H+]2) Tr<p2)
- [avipw.) -
2
T (Ve H107) Tr (p°) + T (Vi H®") T (0?) (29)
B d(d? —1)
2
o ((v ),
d a2 —1
As Tr(p) = 1 and Tr([Vk,H+]®2) = Te([Vi, Hy])? = 0.
To bound ’Ilr([V;€7 H+]2) we use the triangle inequality and then Cauchy-Schwarz to show that
| Tr([Vi, H4]?)| = |2 Tr((VieHs)?) —2Tx | V2 HY (30)
I
<2|Tr((ViHy)?)| + 2| Tx(H)| (31)
N——
1513
< 2|[Viella Vi Hy Vil |2 + 2] HJ3 (32)
- 2Tr[VkH+VkVJH+VH + 2| H|? (33)
= 2Tr[H3] + 2| H|; (34)
= 4| H|l3 (35)



Assuming that HH||§ € O(d), it follows that Var(dp, E) € O(2).

Assuming U, is a 2-design, results in:

2

Var(@9, B) = - [ dUp(U-) [ ()10 (o VS0, 1€ 1) (36)

a6,

For simplicity let’s assume that H is expressed as a sum of Pauli operators and so Tr(H) = 0. Then using
Cauchy-Schwarz (41) we get:

‘Tr([p,, Vk}2>' <ATe(p?) =4 (38)

Therefore, Var(dy, E) € O(%).

Therefore the probability that the cost gradient deviates from 0 is suppressed exponentially in the number
of qubits.



2.3 Useful formulas

Let U(d) denote the unitary group of degree d = 2"™. Let du(U) be the volume element of the Haar measure,
where U € U(d). The following identities hold.

/ du(U) Tr(UAU'B) = w (39)

/d,u(U) Te (AU®ZBUT®2) _ Tr(A) Tr(B) —(;T_r(lAW) Tr(BW)  Tr(AW) Tr((ﬁ()l;—_Tlr)(A) Tr(BW) (40)

where W is the swap operator W |7) |7) = |J) |4).

Note that Tr(A Q) C)W) = Tr(AC) (prove this to yourself!) and therefore Tr (A‘X’2 W) = Tr(A?).

The Cauchy-Schwarz inequality in trace form is given by:

I Tr(ATB)| < ||All2|IBll2 = /Tr(ATA)y/Te(BT B) (41)
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